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ABSTRACT 

A numerical filtering technique useful in removing the diurnal 
component from surface data of magnetic field measurements is de- 
scribed. Derivations of formulas used to compute filter weights and 
several examples of the current use of such fi l ters are presented and 
outlined. 
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THE DESIGN OF NUMERICAL FILTERS 
FOR GEOMAGNETIC DATA ANALYSIS 

by 
Kenneth W. Behannon and Norman F. Ness 

Goddard Space Flight Center 
* 

INTRODUCTION 

In investigating the transient time variations that occur throughout the geomagnetosphere, 
effective comparison can be made between the data representing the magnetic field measurements 
from surface observatories and satellite magnetometer data only if the periodic effects due to the 
earth's rotation, such as Sq , a re  removed from the ground observatory data. One numerical 
technique which has proven useful in removing the diurnal component from surface data is that of 
numerical filtering. It is the purpose of this discussion to describe briefly this process and to 
show how it has been developed and successfully applied. Although the applications described 
here are rather limited in scope, techniques such as these lend themselves so well to automatic 
data processing that they find general application in many studies of geophysical time or space 
ser ies  (Reference 1). 

For processing data in such a way as to selectively remove certain periodic components, one 
can construct linear operators that produce the same effect when applied to experimental data as 
that produced by electrical and optical filters. Analogously then, in discussing these numerical 
filters, we shall speak of the input function I( t ) , the output function o( t ) , the theoretical transfer 
function T( f )  used in the design of the filter, the gain or frequency response W( f ) (which is the 
transfer function of the resultant numerical filter), and the phase shift w( f ) of the filter. 

Two important properties of a linear filter are (1) that the output is a linear function of the 
input, i.e., if two inputs 11( t ) and 12( t )  give the outputs o,( t ) and 02( t )  , then input 
I , ( t )  = I l ( t )  t I ,( t)  will give the output o,(t) = o,(t)  + 02(t)  ; and (2) its response is independ- 
ent of the time origin, i.e., if an input ~ ( t )  results in an output o(t)  , then an input ~ ( t  t to)  gives 
an output o(t t to) .  

Most time series of interest in geophysics can be considered to be quasi-stationary time 
series. A stationary time series is a random function of time which may also be a function of 
initial conditions but whose average probability distributions are independent of time (Reference 2). 
The fundamental principles of stationary time series smoothing have been elaborated by Wiener 
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(Reference 3) and others. In application, simple smoothing methods are included among the basic 
techniques of numerical analysis (Reference 4 and Reference 5). Since such data smoothing is 
actually a type of time o r  space series filtering, it will be instructive to delay further discussion 
of numerical filter design until a brief description of a simple smoothing operator or, equivalently, 
a filter has been given. 

A time series g ( t )  of equally-spaced data values at intervals A t  can be smoothed "by threes" 
using the linear formula 

One can see the result of this operation on the frequency spectrum of g( t )  by looking at its effect 
on an individual pure sinusoidal time function. 

As an example let 

where w = 277-f (frequency) and kAt = t .  Then 

1 e - i o A t  + .iokAt + e i o k A t  . i o A t )  , 
= 3  ( e i w k A t  

1 + 2 cos w A t  
= g k (  3 

Thus the individual values in the time series are modified by a factor, the transfer function, 
which is independent of k. In the frequency domain, the spectrum will be amplitude modulated by 
the factor (1 /3 ) (  1 + 2 COS d t  ) . Plotting this quantity as a function of frequency reveals that most 
of the frequencies in the upper half of the spectrum are  suppressed by this simple smoothing 
process (for a certain limited range of frequencies). In this case the time ser ies  has been "low 
pass filtered" by taking weighted running means with all weights identical and equal to 1/N, where 
N is the number of data points used in computing the mean. If "aliasing" of the data occurs (see 
following paragraphs) then contributions from frequencies near f = N/At can occur, where N is an 
integer. 

2 



5 

11 
1 

In general a numerical filter consists of a set of "weights" w, which determine the actual 
transfer function W( f )  of the filter. The design of a numerical filter begins with establishing the 
shape of the data window in the frequency domain which will give the desired effect. Having speci- 
fied the theoretical transfer function, the remainder of the problem consists of determining the 
weights W, in such a way that the actual transfer function, or frequency response, approximates 
the desired one as well as possible. A perfect low pass filter, for example, would leave unaltered 
all frequency components from f = o to the desired cutoff frequency f ,  and then would suppress 
all frequencies greater than f,. The response of an actual numerical filter can only approximate 
this ideal behavior, with the accuracy of the approximation depending on the values of various 
design parameters. 

As in the simple smoothing process, a numerical filter is applied in such that 

W, y( t  t kAt). 
k=-M 

The filtering is accomplished by "sliding" the filter along the data, applying it to M t 1 t N data 
points to produce the filtered equivalent of the data point which has been multiplied by Wo and then 
moving each weight to the next point in the ser ies  and repeating the application. Repetition of the 
process until all the data in a given run have been covered produces a series of filtered data points 
which defines the output function o( t) . Within the precision of the filter these points will trace out 
the input function I( t )  with the unwanted high frequency components removed (if a low pass filter 
is being used). 

When experimental data are derived by discretely sampling some phenomenon at equally 
spaced intervals of time, the problem of aliasing may occur in which the sampling rate is low 
enough to confuse two o r  more frequencies in the data. The net result is that they appear to be the 
same frequency (Figures la and lb). To avoid this problem and hence to define a unique input 
function as described by a set of data points, one must be able to assume that the phenomenon 
studied is spectrally limited to the range I f I 5 f =,  where fc = f ,/2, f being the sampling fre- 
quency and fc being the cut-off or Nyquist* frequency. If such an assumption is valid, then the 
function has been sampled frequently enough so that all significant frequency components a r e  de- 
terminable. This is a result of the sampling theorem of information theory (Reference 2). The 
sampling theorem states that if a function G( t )  contains no frequencies higher than w cycles per 
second, then it is completely determined by giving its ordinates at a series of points spaced 1/2w 
seconds apart, the series extending throughout the entire time domain. There is an equivalent 
theorem for the frequency domain. 

We shall now very briefly present a few of the analytical considerations underlying numerical 
filter design. First of all, two mathematical concepts basic to all time series analysis are the 
Fourier transform and the operation of convolution (Reference 6). 

*After H.  Nyquist of Bell Telephone Laboratories 
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The Fourier transform F( f )  of a function 
g( t 1 is defined as 

m 

F ( f )  = [ g ( t )  e-i2T f t  d t .  
J -m 

When g( t )  is such that 

+T 
lim - 1 l g ( t ) I2  d t  <a, 
T-m 2T lT 

then 

g(t)  = F(f)  e i m f t  d f  

F( f ) and g(  t ) are referred to as a trans- 
form pair  when the above conditions hold. In 
various phases of the analysis of t ime series 
the operation of Fourier transforming a func- 
tion is required. However, the function may 
not be known analytically but only at certain 
tabulated values. Thus some approximation to 
the above integration must be made with dis- 
crete data. 

.."-. ..".. 
. .  . .  

EXAMPLE: AT = 1/3 :. F, = 1.5 LET F, = 0.5 THEN F, = 2.5 

FREQUENCY , 
I =  

(b) 0-- FS + 2FS 

Figure 1 -Discrete sampling and the aliasing problem: 
(a) An example of the sampling problem in  which two 
different sinusoids (F, and F,) have exactly the same 
sample values at the sample paints, (b) A line running 
from zero to infinity along which frequencies are repre- 
sented as points (F, = sampling frequency), (c) The same 
line as in (b) but with the Nyquist frequency, Fc placed 
such that F, = Fs/2 = 1/(2AT)and F, = 2kF, f F, where 
AT i s  the period of the sampling frequency and k i s  an 
integer multiplier and (d) Aliasing i s  illustrated by the 
line (b) folded back and forth on itself. Subsequent 
folds occur with the same spacing and a l l  points above 
the same point on the frequency axis appear to be the 
same frequency. After sampling, a1 iased frequencies 
cannot be separated. 

The convolution of the function g ( x )  with respect to the function f ( x )  on the interval [a,b] is 
the function 

f ( t )  g (x- t )  d t  = g ( t )  f (x - t )  d t .  I 
If the interval is extended to include the entire real line then one obtains the function 
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The latter is defined simply as the convolution of the functions f and g (Reference 7). The 
integrand in the convolution integral will have nonzero values only in the region of overlapping of 
the functions f ( t )  and g(x - t ) . Thus there are cases where h ( x )  = H ( x )  for a and b both finite 
numbers. For example, if [a, b] = [o, X] and the integrand is zero for all values of t < 0, all 
nonzero values of the integrand will lie within [O,X] and hence h ( x )  = H(x).  

Theoretically, the transfer function of a filter is simply the ratio of the output spectrum to the 
input spectrum, 

T ( f )  = '(f) 
I ( f )  ' 

or 

where I( f )  and O( f ) are the Fourier transforms of the input and output functions I (  t ) and O( t ) . 
Multiplication in the frequency domain of functions possessing Fourier transforms corresponds to 
convolution in the time domain of the transforms, and conversely (Reference 6). Thus 

or, equivalently, (3) 

m 

O ( t )  = [ T(7) I(t--7) d-7. 
J -02 

The Fourier transform of the function T( t ) is the theoretical transfer function of the filter: 

T ( f )  = T ( t )  e i z V f t  d t  L (4) 

An arbitrary function can always be expressed as the sum of two component functions of which 
one is odd and the other even. Thus we can write the relation 

T ( t )  = TE t To. 

From the definition of even and odd functions it follows that 

T(-t) = T, - To. 
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Addition and subtraction of these expressions yield 

1 - T -- [T(t)  + T ( - t ) I ,  
E - 2  

1 T 0 - 2  -- [T(t)  - T ( - t ) ] .  

Now we can write Equation 4 as 

T ( f )  = (TE t To) e iot  d t  I f_" 

(TE t To) (cos w t  + i sin w t )  d t .  

Because of the effect of integrating even and odd functions between symmetric limits this reduces 
to 

TE cos w t  d t  + 2i 

It is seen immediately that for T( f )  to be a real number, we must have To = 0. This in turn re- 
quires that T( t ) = T( -t  ). 

The theoretical transfer function is approximated by the actual transfer function o r  frequency 
response of a numerical filter: 

If M = N then one can write 

k = l  

As in the case of continuous functions, we can express w, as the sum of even and odd parts: 

Wk = WE + w, , 
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and similarly obtain i 

1 w - -  w + W - , ) ,  E - 2  ( k  

Again as in the ideal case one finds that the necessary and sufficient condition for the transfer 
function W( f ) to be a real number for any value of f is that the filter be symmetric (W- , = W, ) . 
If the filter is asymmetric (w-, = -wk)  , the transfer function is a pure imaginary number. 

The complex number representing the transfer function can also be written 

W(f) = G(f)  e i V ( f )  (7) 

where G( f )  is the gain of the filter and (p( f )  is the phase shift that it produces. G( f )  must be an 
even function of f and (p( f )  an odd function of f for real input and output functions. The relation 
indicated by Equation 7 may also be written in the form 

W(f) = G(f)  cos T(f)  + i G(f)  s i n  cp(f). (8) 

It has been shown that if the filter is symmetric, W( f )  is a real number. From Equation 8 it is 
seen that this requires that (p( f )  be equal to zero o r  7 ~ .  Likewise if the filter is asymmetric and 
hence W( f ) is a pure imaginary, we must have that (p( f ) = +rr/2 o r  -77/2. In other words, besides 
modifying the amplitude of an input frequency component due to the effect of the gain G( f )  , a filter 
with W, = w-, for all k either has no effect on the phase of the input function or shifts it by sr, 
while a filter with -w, = w-, for all k produces a phase shift of + ~ / 2 .  

One can thus call the even part  of the transfer function the "in phase" portion and the odd 
part  the "out of phase" portion due to the effect ,of each when nonzero. In the most general case 
W, = WE + W, with neither part  equal to zero, i.e., it contains both in-phase and out-of-phase 
portions, is complex, and phase shifts the input function by an amount o < 9 < m . 

From Equation 6 with W, = 0 and W-, = -w, one obtains the formulas for the asymmetric or 
"sine" filter frequency response 

N 

W(f) 2 i  LW, s i n  2srfkAt 
k= 1 

(9) 

Consider as input the complex sine function I (  t )  = A e i o t  with Fourier transform I(  f )  = A .  Sup- 
pose it is desired that the filter output be the derivative of I( t )  , i.e., that o( t )  = iwI( t ). Trans- 
forming O( t )  reveals that in the frequency domain we must have o( f )  = i oA.  Since q f )  = T(f) - I ( f ) ,  
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it is hence necessary that T( f )  = i w  = w e i n / 2 .  Thus in order to perform differentiation the trans- 
fer function of a filter must be such as to produce a gain of w = ;frrf and a phase shift of + / 2 .  

Because it provides the necessary phase shift, the asymmetric or sine type filter may be used as 
a differentiator. 

For  most numerical filtering of geomagnetic time series it is desirable only to attenuate 
certain frequency components without altering the phase. Hence of greatest importance is the 
symmetric or "cosine" filter with frequency response 

N 

W ( f )  = W, + ZXW, C O S  2.rrfkDt. 
k= 1 

This expression may be used to compute the frequency response characteristics for  the designed 
filter once the numerical values of the weights w, are known. In the following sections we shall 
discuss two methods for calculating the values of the weights, given the characteristics of the 
theoretical transfer function T( f )  . 

THE LEAST SQUARES APPROXIMATION TO T[f ]  FOR 
A LOW PASS FILTER 

One approach to the approximation of the theoretical transfer function is through application 
of the least squares technique. In the following development of formulas which can be used to 
calculate filter weights, we shall closely follow the discussion of the subject by Martin (Refer- 
ence 8). Instead of using the frequency f ,  Martin introduces the normalized frequency 
r = f / f  = f / 2 f c  . He then designates rc to represent the ratio of the desired cutoff frequency to 
the sampling frequency. We prefer to use the parameter p = 2r  = f / f c  for frequency normali- 
zation and P as the cutoff ratio. 

As stated previously, the problem of filter design consists of determining the M f 1 t N 

weights w, such that the actual transfer function of the filter is defined by Equation 5, or, in 
te rms  of p ,  

approximates the best, in the least squares sense, the desired transfer function. The transfer 
function for a perfect filter may be written in the form 

~ p ( ~ )  being the phase shift. 

8 
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1 
We shall require that the mean square deviation between T ( p )  and W(P) over a specified 

interval -p' to +PI, given by 

be minimized by proper choice f the M + 1 N weights w, . Thus we can write 

or, since for z* the conjugate of Z ,  I Z I  = Z Z*, 

To minimize the function I-, the deviation of that function with respect to each Wk must be 
zero. In other words we must have 

G(p) e i ( P ( P )  - 2 W, einnPj d p  = 0 ,  (15) 
n=-M 

or 

This gives us  the relation 

or, by changing the order of integration and summation, 
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Since r ( k  - n ) p  and rkp - rp(p) are both odd functions of p,  their cosines a r e  even functions of 
p and we may hence write the above integrals as 

There is one of these equations for  each value of k from -M to N ,  or, for a symmetrical filter, 
from -N to +N . 

It was previously stated that the phenomenon being studied must be spectrally limited to the 
range 1 f I 5 f c  to avoid aliasing problems. 

cos 7r (k 

Equivalently, we require / P I  5 1, this leading to 

- n ) p d p =  ( o i f k f n  1 i f k z n ,  (19) 

Hence we are left with 

so that each Wk is expressed explicitly. We may write this as 

where P is the cutoff ratio. 

For the ideal low pass filter, c ( p )  = 1 for o 5 p 5 P a n d q p )  = o for p > P.  Hence 
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B or, for zero phase shift, 

W, = cos  nkp dp. 

F o r k  = 0 this gives us  

W, = s,' dp = P, 

and for k # 0 we have 

sin nk P 
nk 

w, = 

Equations 24 and 25 may be used to compute low pass filter weights for sharp cutoff, but they 
lead to an approximation of the ideal transfer function which exhibits a large overshoot for values 
of p slightly smaller or greater than P . This is a manifestation of the Gibbs phenomenon dis- 
cussed in most works on Fourier analysis. This phenomenon occurs near a discontinuity in a 
function which is being approximated by a finite ser ies  of size N .  As N increases, the position 
at which the maximum occurs moves nearer to the point of discontinuity, but the value of the 
overshoot amplitude is independent of N . In approximating a perfect low pass filter transfer 
function, the deviations from the theoretical values near the cutoff frequency are usually much 
larger than can be allowed. 

To avoid the sharp cutoff overshoot, instead of making the function zero for all values of 
p > P ,  it can be continued by a sine function which has  the same value and the same derivative at 
p = P as the transfer function and, together with its derivative, becomes zero for a specified 
value of p .  Instead of using p directly, however, it is more convenient to use a parameter hp,  

of magnitude corresponding to the change in p during 1/4 cycle of the sine termination function. 
If the ratio of the change in p to h p  is included in the argument of the sine function, it forces 
both the termination function and its derivative to have the necessary values at their end points. 
The geometry of the sine termination is shown in Figure 2. Throughout the remainder of this 
discussion we shall simplify the notation for the parameter to h ,  but it should always be taken to 
mean the h obtained when p is used for the normalized frequency. 

In te rms  of h,  a function which will produce the desired termination effect is 



where y o  is the amplitude of the sine function 
and po is the value of p at the point where the 
function has the value yo .  The relationship of 
yo and po to h is also shown in Figure 2. As 
may be seen, the quantities y o  and h will  de- 
termine the geometry of the cutoff. The param- 
eter h will  permit variation of the slope of the 
sine termination. 

To design a filter with a sine termination, 
h must be as small as possible but such that 
the actual frequency response of the filter does 
not depart from the theoretical response by 
more than a permissible tolerance. (As h ap- 
proaches zero, the filter approaches a sharp 
cutoff filter.) In Figure 3 we see the improve- 
ment offered by sine-terminated filters over 
sharp cutoff filters designed for the same cut- 
off frequencies and with the same number of 
weights. 

So, instead of letting the transfer function 
go to zero immediately for all p > P, we set it 
it equal to A(p) in the range P 5 p S po + h .  
Then we can write 

W, = (1) c o s  rkpdp  

FREQUENCY NORMALIZATION PARAMETER, p = f/f, 

3 

Figure 2-Geometry of the sine termination function 
A(p) which i s  used to provide smoother cutoff for low 
pass f i  Iter frequency responses. 

+ yolppo+h (1 COS r k p d p  + (0) cos nkpdp 

where the first integral is the weight computed for sharp cutoff, and the second is the sine termi- 
nation correction. 

We have already seen that if k = 0 ,  W , ( O )  = W 0 ( O )  = P. Similarly, since 

w i a )  = yo (1- sin- * - c o s n k p d p ,  
2 h  
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Y Ln 
Z 
2 
v, w oc 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .O 

FREQUENCY NORMALIZATION PARAMETER, p = f/f, FREQUENCY N O R M A L I Z A T I O N  PARAMETER, p = f/fc 

Figure 3-Marked contrast between sharp cutoff and sine-terminated approximations to an ideal filter with low cut- 
off at p = 0.2 i s  illustrated by the frequency response of two filters with N = 20 and N = 50, respectively. The 
approximation i s  improved by use of the larger filter. 

we have for k = 0 that 

cos -  - 
+ h - p -  ' 

77 - 
2 

With A(p)  defined by Equation 26 differentiation gives 

77 77 P o - P  
A ' ( p )  = 2i; yo  cos - - 

2 h '  

so that 
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A t p  = P  wewantA(p) = T(p) and A ' ( p )  = T ' (p ) ,  sowechooseA(P) = 1 . 0  and A ' ( P ) =  0 .  

A ' ( P )  = 0 requires that po - P = h , or  that po = P t h . By substitution the expression for A ( P )  = 1 

then yields yo = 1 / 2 .  Using these values for yo and po we have finally from Equation 28 that 

WJ") = h , 

and hence that 

In a similar way, if one works on through from Equation 27 (see Reference 8), one obtains for 
k # 0 that 

cos  nkh sin nk (P + h) = (k, h) sin nk (P + h) 
wk = [1-4k2 h2] [ nk 1 nk 

Tables of F(k,h) may be computed independently of any individual filter and then they will be 
available for particular applications. It will  be found from the expression for F(k,h) in Equa- 
tion 31 that an indeterminate form is obtained whenever kh = 1/2. L'Hospital's theorem may be 
used to evaluate the expression in that situation, and it is found that F(k, h) = 0.78540 for kh = 1 /2 .  

One further correction may be added to the weights in order to normalize the gain to 1.0 at 
p = 0 . Let the value of the kt weight obtained from Equation 3 1 be designated by L,. Then 

A = 1 -  ( L O + 2 E L k )  , 

and the corrected weight is given by 

A 
2 N +  1 

w, = L ,  +- 

Once the weights have been computed using Equations 30,31, and 32, the gain o r  frequency response 
is easily computed using Equation 10: 

k= 1 

We now have all the formulas necessary for the design of least squares-approximated low 
pass filters. In each case the parameter h can be chosen such as to tailor the cutoff of the filter 
to the specific needs involved. We have already given some indication of the fact that h is sen- 
sitive to the number of weights in the filter, and progressively larger values of h a r e  necessary 
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, 
as one goes to progressively smaller filters (h 

effectively and efficiently accomplished. This would suggest that a certain amount of experimen- 
tation would be necessary to reveal the optimum value of h for a particular filter. This is the 
value below which the values of the function near the cutoff depart from the theoretical values by 
an unacceptable margin due to the size of the overshoot, and above which the termination gets con- 
tinuously smoother but the accompanying increase in the half-width of the main lobe brings down 
the precision. The effect of filter size N on the width of the main lobe is shown in Figure 4. 

1m) in order for the sine termination to be 

From a study of the cutoff characteristics of a number of fi l ters for various values of h, it 
has been found that at h 2 1/N (if one is using the p notation) the terminal oscillations have almost 
completely disappeared. Although a slightly greater degree of smoothness is obtained as one goes 
to still larger values of h, the predominant effect is merely the broadening of the pass band. On 
the other hand, as one employs progressively smaller values of h, the terminal oscillations grow 
rapidly more significant until the large excursions characteristic of sharp cutoff a r e  obtained. 

Thus to select the proper filter one must compromise between bandwidth and termination 
smoothness, and the limiting factors in the compromise are the minimum cutoff slope that will be 
acceptable for the task at hand and the smallest main-lobe to side-lobe ratio that can be tolerated. 
Once the computation of filter weights and corresponding frequency responses has been pro- 
grammed, it is a simple matter to generate a family of response curves for a particular N and 

w > - 
4 
w oz 

FREQUENCY N O R M A L I Z A T I O N  PARAMETER, p = f/f 

Figure 4-Ultra low pass (cutoff ratio p = 0) filter main lobes for selected values of N. The increase 
in sharpness of a filter due to increasing its size is illustrated. 
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various values of h to facilitate the final filter selection. Figure 5 illustrates the three cases of 
h = 1/N,  1/2N, and 2/N fo r  a filter with P = 0 and N = 100. Figure 6 is a graphical representation 
of the optimization problem. 

On the question of best filter size, we see that a larger value of N permits sharper sine 
termination, and the undesired frequencies a r e  eliminated more efficiently. Another advantage is 
that the effect of an erroneous input point is much less for a larger filter. However, larger filters 
require longer unbroken runs of data. 

Earlier in this discussion (Equation 1) we described how the filtering is accomplished by 
sliding the filter along the data, applying it to 2N + I data points to produce the filtered equivalent 
of the data point lying at the center of the filter (at W, ) and then moving each weight to the next 
point in the ser ies  and repeating the process. It can be seen that this requires th2t one have at 
least N data values both preceding and following the time range of interest in order to get the 
filtered equivalents of all data points in that range. Thus a limited number of prior points may 
dictate that a smaller filter be used, o r  else a scheme may be employed (Reference 8) which in- 
volves the use of progressively larger filters as one gets further into the run of data and con- 
versely near the end. In either event, one steps down to less  precisely filtered data throughout 
all or  at least part of the range of interest, and this may not be acceptable. In that case one must 
go ahead and use the larger filter and settle for fewer output values. 

It may so happen that the characteristics of the filtering job to be done will  suggest particu- 
lar filter size as being most convenient. If it then turns out that this filter will  be precise enough 

I I I I I I I  
0 0.02 0.04 0.06 0.08 0.10 

-FREQUENCY NORMALIZATION PARAMETER, p = f/fc 

-0.21 I I I 

Figure 5-Dependence of low pass filter cutoff charac- 
teristics on the sine-termination parameter h, where 
N = 100. 

NUMBER OF DATA POINTS, N 

SMOOTH TERMINATION 
BUT INCREASINGLY MORE 
GRADUAL CUTOFF 

INCREASINGLY LARGER 
TERM1 NAL OSCILLATIONS 

A BUT SHARPER CUTOFF 

30 35 40 45 50 55 60 65 70 75 80 85 90 951 0 

Figure 6-Regions of significance in  fi l ter response opti- 
mization for a given value of N. This i s  a general illus- 
tration of the design problem created by the morphologi- 
cal changes that occur in the filter frequency response 
when h i s  varied as i n  Figure 5 .  The majority of filter- 
ing problems are perhaps best accommodated by a filter 
with h slightly less than 1/N where the oscillations are 
s t i l l  not too large and the cutoff i s  reasonably sharp. 
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for the task or will give the desired effect and that there are sufficient data values at each 
end of the run to be used, then there is no selection problem. 

For one application of a low pass filter it was required to produce one which could be used to 
compute hourly averages with the effects of high frequency fluctuations removed. The input con- 
sisted of 2.5 minute surface magnetic field values (H component). There a r e  25 such values 
inclusive to each hour (0-24), so the natural choice for the task was a 25-point filter (N = 12). 
One-hour periodicities have a corresponding value of p = 0.083. If this were used as the cutoff 
value, then the slow cutoff of this relatively small filter would allow a considerable fraction of 
higher frequency components to get through. This problem was circumvented by choosing the cut- 
off ratio to be P = 0 .  In this way the slow cutoff itself formed a low pass  band which had a gain 
of 0.5 at p = 0.08 (the value of h used), and zero at p = 2h = 0.16 . A filter for which P = 0 is 
called an ultra low pass filter and essentially gives the trend of the input function. The response 
of the filter used is given in Figure 7, and the weights are listed in Table 1. 
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FREQUENCY N O R M A L I Z A T I O N  PARAMETER, p = f/fc 

Figure 7-Frequency response of the ultra low pass filter 
designed to produce weighted hourly averages from 2.5 
minute data (i.e., the weights were used in the aver- 
aging of the data for each hour to remove any effect on 
the average due to high frequency components). 

Application of a filter by sliding it along 
the input data gives a "running average" of that 
data. To obtain hourly averages of 2.5 minute 
data, the filter was applied in turn to the 25 
data points inclusive in each hour to produce 
the filtered equivalent of the center point value 
or average for that hour, and then the entire 

Table  1 

Low Pass Filter Weights* for 25-Point Filter 
(N = 12) with h = 0.08. 

W, = 0.07949 

W, = 0.07817 

Wz = 0.07434 

W3 = 0.06828 

w, = 0.06046 

W, = 0.05146 

W, = 0.04189 

W, = 0.03239 

W, = 0.02350 

W9 = 0.01566 

w,, = 0.00919 

W I I  = 0.00421 

W,, = 0.00071 

*Because all filters for which weights are given in 
Tables 1-5 are symmetrical, only the weights corre- 
sponding to positive indices are tabulated. Thus in 
applying the full filters W( -k) = W(k) i s  used. 
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2: 20.- -RAW 2.5 MIN. DATA------FILTER OUTPUT 
2 . I  
Y u I, i i i 4 i i i . i  9 

TIME (hours) 

Figure 8-Smoothing of magnetic data provided by the 25-point 
ultra low pass fi l ter (Figure 7) by running i t  along the data. 
The 2.5 minute output data represents the trend of the input 
data. 

fi l ter  was moved over one hour and ap- 
plied again. The values obtained in this 
way are the same as every 25th point on 
the curve described by the 2.5 minute 
values obtained by sliding the filter along 
the run of data point by point. An example 
of the effectiveness of this filter for 
smoothing out high frequency fluctuations 
when applied by sliding it along a run of 
2.5 minute data is given in Figure 8. 

Ultra  low pass fi l ters may be labeled according to cutoff point, sine termination char- 
acteristics, and size by means of, the following scheme. A filter which is classified as a paabbcc 
filter is one with cutoff aa = lOOP, sine termination parameter bb = 100 h,, and size cc = N. 
The use of P in front instead of p will  indicate that the values for cutoff and h a re  given in 
terms of the frequency ratio r = f / f ,  = p/2 .  

THE CHEBYSHEV APPROXIMATION TO T(f) 

FOR A LOW PASS FILTER 

Another mathematical approach to the computation of filter weights is through the use of 
Chebyshev polynomials (Reference 9). The Chebyshev polynomials a r e  defined by 

T ~ ( x )  = COS m e  

= cos ( m a r c  cos x). 

The Fourier expressions for orthogonality a re  

0 f o r m f n ,  
COS m e  C O S  n e  de  = 

7r f o r m = n = O ,  

and 

(33) 

(34) 

0 f o r  m f n .  
c o s m e j  C O S  ne j  = 

j = O  N f o r m = n = O .  
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In te rms  of the Chebyshev polynomials these may be written 

o f o r m f n ,  

7~ f o r m = n = O ,  

T,(x) Tn (x)- dx = 

6 2  (3 5) 

and 

o for ( m  # n )  , 
Tm(xj)  Tn (xj )  = N/2 f o r  (m = n )  , 

j = O  N f o r  (m = n = 0) . 

That the T,(x) are polynomials is shown by the following: De Moivre's theorem states that 

cos m 8  t i sin m 8  = ( C O S  8 + i s in  8)". 

Expanding the right hand side, taking the real part  of both sides, and replacing even powers of 
s i n  e by 

it may be established that COS n8 is a polynomial of degree n in C O S  0 .  However, since 
c o s ( a r c  COS X )  = x , then T,(x) = cos(m COS x) is a polynomial of degree m in x. 

A general property of orthogonal polynomials is that they are easy to compute and to convert 
to a power series form. From the definition for the Chebyshev polynomials one obtains 

T,(x) = 1 (1) 9 

TI (x) = x ( c o s  e), 
T, (x) = 2x2 - 1 ( c o s  2 8 ) .  

and so on. Another property is that orthogonal polynomials satisfv a three-term recurrence re- 
lation. In the case of the Chebyshev polynomials this relation is 

Finally, we have that IT,(X)I  5 1 for  1x1 5 1 . 
According to the minimax principle, Chebyshev approximations are associated with those 

approximations which minimize the maximum error .  Least squares approximation keeps the 
average square e r ro r  down, but in so doing isolated extreme e r r o r s  are allowed. Chebyshev ap- 
proximation keeps the extreme e r ro r s  down but allows a larger average square e r ror .  
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For a symmetrical filter, 

If we let x = COS 8 = c o s n f n t  = COS [ ( n / 2 )  f / f c ]  = COS (TTP/~)  , then W(p) is a polynomial of degree 
2 m  in x . Now also let x = z/zo . We have then that T2,(z) is a polynomial of degree 2m in 
z = xzo . By extending the Chebyshev range beyond one then 

Because of the similarity of analytical form we equate 

Now to approximate the frequency response with T ~ , ( . ) ,  it is necessary to adjust T,,(z) to give 
W(P) = 1 . 0  at P = 0. For f / f c  = P = 0, x = cos(.rrp/2) = 1 . But x = z/zo , so that x = 1 requires 
z = z 0 .  Hence T2, (z0 )  corresponds to p = 0. Let T z m ( z o )  = r. Then W(p) = T2,(z) /r  will give 
the normalized frequency response (Figure 9). At  z = 1, 

T,, (2) = T,,( l )  = cos [2m arc cos ( 1 ) l  
= cos 4mn 
= + l .  

Hence, as may be seen in Figure 9, r is the ratio of the main lobe to the amplitude of the side 
lobes. The maximum precision of a particular filter of size N will  be realized if the weights W, 

PARAMETER, Z I 
Figure 9-Filter frequency response approximation by the 
Chebyshev geometry when the Chebyshev range i s  ex- 
tended beyond unity (T,(z) > 1 for Z > 1). 

a r e  determined in such a way that the ratio r 

is maximized and the width of the main lobe is 
minimized. 

Now we must investigate the zeros of 
T,,(z) .  Writing 

T2,(xzo) = cos 2 m n ,  

where n = arc COS X Z ~ ,  it is seen that for 
T2,(xzo)  = 0, we must have 

n 2mnk = kn -. 2 

By writing 
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(2k - 1) 2mn = - 7 r ,  
k 2 

then 

or  

But 

7r 2m arc cos xk z o  = (2k- 1)-, 
2 

(2k - 1) arc cos xk zo = ___ 7 r .  
4m 

7l f k  7r 

fc 2 
Xk = cos - - = cos -pk. 

Therefore 

o r  

7r (2k - 1) 7 r ,  z o  cos- pk = cos  ~ 

2 4 m  (39) 

This will give the values of pk at which the various zeros occur. Most importantly, the first 
zero, which falls at the half-width p1 of the main lobe, is given by 

(40) 
7r 7r 

z o  cos-pp ,  = cos -. 
2 4m 

Hence for any filter size m = N and desired main lobe halfwidth pl, one can compute the corre- 
sponding z0 from 

7r 
cos - 4 N  

cos -pl 
zo = 

7r 

2 

By knowing z0 one can then compute r = T,,(z~). Finally one can make use of the relation 

to compute both the filter weights and the associated frequency response profile. 
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A s  a brief example, we shall perform the calculations for the weights of a 7-point low pass 
filter (N = 3). Now 

7T 
W j  COS 2 j 0 ,  where 0 = 3 p , 

j=1  

= w, + 2w1 C O S  2 e  + 2w, c o s  4e + 2w, cos 68. 

Let x = cos e .  From the recurrence relation we obtain 

cos 2 8  = T, (x) = 2x2 - 1 ,  

cos 4 e  = T, = gX4 - gX2 t 1 ,  

cos  68 = T, (x) = 32x6 -48x4+ 18x2 - 1 .  

and 

Substituting from the relations in Equations 43 into Equation 42 gives 

W (p) = 3 2 1 , ~ ~  + (8I , -48I3)x4 + (211-812+181, )~2  + (1,-Ilt12-13), 

where J 

I, = 2W,, I, = 2W,, I, = 2W1, and I, = W,. 

But, as we have seen, 

T,, (xz,) T, (xz,) 32 20" x6 - 4 8  z: x4 + 18 zg xZ - 1 - - 
r r r 

We can now equate T , ( x ~ o ) / r  = w(p) by powers of X. This gives 

W, = z:/2r, 

W, = 12W3 - 6 ~ : / 2 r ,  

and 

W, = 4W, - 9W, + 9z:/2r, 

w, = 2(W1 - w, t W,) - l / r .  

(43 ) 

(44) 

(45) 

If, for  example, we choose p1 = 0.5, then for N = 3 we get from Equation 41 that z, = 1.37 .  



Then 

r = T,(1.37) = 92, 

and from Equation 46 it is found that 

W, = 0.2509, 

W, = 0.2113, 

W, = 0.1218, 

and 

RESPONSE OF N = 
//-\ CHEBYSHEV FILTER 

\ 
\ 

.. 

FREQUENCY N O R M A L I Z A T I O N  PARAMETER, p = f/f, 

V;, = 0.0415. 
Figure 1 0-Frequency response of a crude Chebyshev 
low pass filter (a) and the effect produced by applying 
the shifting theorem to that same fi lter (b). 

The frequency response T ~ ( ~ ~ ~ )  of this filter 
is shown in Figure lO(a). A s  can be seen, this 
filter cuts off too slowly to be useful except for some types of smoothing, but it illustrates the 
principle of computing filter weights using Chebyshev polynomials. 

SCALING FILTERS AND SHIFTING FOR BANDPASS RESPONSE 

Whereas the computation of the weights for a large filter using the least squares approxima- 
tion method is no more of a problem than for a small filter if one has automatic computational 
facilities available, the computation of a large Chebyshev filter is extremely complex due to the 
size of the polynomial involved. One way around this is to take a smaller filter and apply scaling 
and interpolation to produce a larger filter. 

Filter scaling is accomplished in the following manner. Suppose we have 

Scaling by a factor g has the effect 

w, (t) = Wk 6 (at  t k A t )  = W, ( a t ) .  

k=-m 

(48) 
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Nonzero weights exist for t = +kAt/a due to the delta function. Correspondingly, when we 
Fourier transform these functions we obtain 

Wk 6 ( a t  + k A t ) e - i 2 n f t d t  
k=-m 

or  

- 
= Y, (f/a). 

Since nonzero weights correspond to 

scaling a filter by a > 1 means a contraction in the time domain and a corresponding expansion 
in the frequency domain. Conversely, use of a < I results in an expansion in the time domain 
and a corresponding contraction in the frequency domain. 

Thus application of filter weights to everymth input point has the same effect on the output 
data as if the sampling frequency had been divided by m . Likewise one can scale a smaller filter 
so as to effect a contraction in the frequency domain until the desired cutoff point is reached, and 
then can use interpolation to increase the number of weights until the desired filter size has been 
reached. Figure 11 shows the response of a 201-point filter (N = 100) computed in this manner. 
In comparison, the figure also shows the response of a least squares filter of the same size. The 
weights are tabulated in Tables 2 and 3. 

Much of the power of the numerical filtering technique comes from the possibility of being 
able not only to low pass filter data, but also to attenuate all frequencies outside a particular fre- 
quency band of interest and hence bandpass filter data as well. The simplest way to accomplish 
this is to shift a low pass filter from f = 0 to f = q ,  the central frequency of the band of interest. 
The sharpness of response of the low pass filter determines the effective width of the bandpass 
window. 
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(52) 

a shift by 7 in time gives 

W, ( f )  = J-1 W ( t  +7)e-i2"f(t+7) d( t  + T )  

= e-2nf7 [ W (t)e-i2nf d t 

(a) LEAST SQUARES 
(b) CHEBYSHEV 

-0.1 I I I I I I I I I I I I I I I I I I - - 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 

FREQUENCY NORMALIZATION PARAMETER, p = f/fc 
-2.2 

Figure 11-Example of response of (a) least squares and (b) 
Chebyshev approximations of ultra low pass filters (201 - 
point, N = 100). The least squares filter was derived with 
h = 0.01, i.e., h = 1/N. If the value of h used in the 
least squares approximation had been slightly less than 1/N, 
the response would have been nearly that of the Chebyshev 
f i  Iter. 

Hence a shift by T in time leads to a shift by e Z n  f T  in the frequency domain. Since 

W(f)  = [ W(t)e-i2nft d t  

and 

W ( t )  = W ( f ) e + i 2 n f t  d f  J-: 
are identical except for a change in sign, if one desires to shift by q in frequency, one must multi- 
ply by e i Z n q t  in time. In order to achieve a bandpass filter at f = q that has a symmetrical 
transfer function, negative frequencies must be considered as well and hence a low pass filter 
must be shifted by +q. 

We define 

WBP(f) = S[WLP(f + q )  + WLP (f  -q)].  

By the shifting theorem described above this gives 

PP (t) = (ei2nqt + e - i2nq t  ) WLP ( t)  

= 2 cos  2 7 r q t  WLP(t).  

(54) 

(55) 
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Table 2 

Low Pass Filter Weights 
for 201-Point Expanded Chebyshev Numerical Filter. 

W (  0 )  = 0.0085210 
W (  1 )  = O.UO85200 
W (  2 )  = 0 . 0 0 6 5 1 5 0  
W (  3 )  = 0.0Cb5070 
W (  4 )  = 0 . 0 0 6 4 9 5 0  
W (  5 )  = 0.00848Oc) 
W (  6 )  = 0 . 3 0 6 4 6 2 0  
W (  7 )  = d.UO84410 
W (  8 )  = 0.0084160 
W (  9 )  = 0 . 0 0 8 3 8 8 0  
W (  10) = 0 . 0 0 8 3 5 8 0  
W (  1 1 )  = O.UU83240 

W (  1 3 )  = 0 . 0 0 8 2 4 6 0  
W (  1 4 )  = 0 . 0 0 8 2 0 3 0  
W (  1 5 )  = 0.0081570 
W (  1 6 )  = 0 . 0 0 8 1 0 7 0  
W (  1 7 )  = il.COi30550 
W (  1 8 )  = 0.008CO00 
W I  1 9 )  = O.OC7942G 
W (  20) = 0.C078820 
W (  2 1 )  = 0 . 0 0 7 8 1 9 0  
W (  2 2 )  = O.CO77530 

W (  2 4 )  = O.CO76130 
W (  2 5 )  = O.CO75400 
W (  2 6 )  = O.CO74640 
W (  2 7 )  = O.OU73E60 
W (  2 8 )  = O.CO73060 
W (  2 9 )  = 0 . 0 0 7 2 2 3 0  
W (  3 0 )  = O.CO71390 
W (  3 1 )  = 0 . 0 0 7 0 5 2 0  
W (  3 2 )  = 0 . 0 0 6 9 6 4 0  
W (  3 3 )  = 0.006673C) 
W i  3 4 )  = O.CO67810 
W (  3 5 )  = 0 . 0 0 6 6 8 7 0  
W (  3 6 )  = 0 . 0 0 6 5 9 2 0  
W (  3 7 )  = 0 . 0 0 6 4 9 5 0  
W I  38) = O.CO63960 
W I  3 9 )  = O.OLl62970 
W (  4 0 )  = 0.0061960 
W (  4 1 )  = 0 . 0 0 6 0 9 4 0  
W (  4 2 )  = 0 , 0 0 5 9 9 0 0  

W (  4 4 )  = 0 , 0 0 5 7 8 1 0  
W (  4 5 )  = 0 . 0 0 5 6 7 5 0  
W (  4 6 )  = O.CO55680 
W (  4 7 )  = 0 . 0 0 5 4 6 1 0  
W (  4 8 )  = 0 . 0 0 5 3 5 3 0  
W (  4 9 )  = 0.0052440 
I d (  50) = C.CO51350 

W l  1 2 )  = 0 . 0 0 8 2 6 6 0  

W (  2 3 )  = d.0076840 

W (  4 3 )  = 0 . 0 0 5 8 8 6 0  

W (  5 1 )  = C.0050260 
W (  5 2 )  = 0 , 0 0 4 9 1 7 0  
W (  5 3 )  = C.OO4807C 
k (  5 4 )  = 0.0046960 
W (  5 5 )  = 0.0045880 
W (  5 6 )  = 0 . 0 0 4 4 7 9 0  
W (  5 7 )  = 0 . 0 0 4 3 6 9 0  
W (  5 8 )  = 0 . 0 0 4 2 6 0 0  

W I  6 0 )  = 0 . 0 0 4 0 4 4 0  
W (  6 1 )  = 0 . 0 0 3 9 3 6 0  
W (  6 2 )  = 0.0038290 

W (  6 4 )  = 0 . @ 0 3 6 1 7 0  

W (  6 6 )  = 0 . 0 0 3 4 0 7 0  
W (  6 7 )  = O.CO33040 
W (  6 8 )  = 0 . 0 0 3 2 0 2 0  
W (  6 9 )  = 0.0031010 
k . (  7 C )  = 0 . 0 0 3 0 0 0 0  
W (  7 1 )  = C.0029C20 
W (  7 2 )  = 0.0028040 

W (  7 4 )  = C.0026120 

U( 7 6 )  = 0 . 0 0 2 4 2 6 0  
W (  7 7 )  = 0 . 0 0 2 3 3 5 0  
k (  7 8 )  = 0.0022460 
W (  7 9 )  = G.0021580 
L i (  8 0 )  = 0.0020720 
W (  8 1 )  = 0 . 0 0 1 9 8 7 0  
W (  8 2 )  = 0.0019040 
W (  8 3 )  = C.0018230 
W (  8 4 )  = C.0017430 
W (  8 5 )  = 0 . 0 0 1 6 6 5 0  
W (  6 6 )  = C.O@15890 
W (  8 7 )  = 0.001515C 
W (  8 9 )  = 0.0014420 
W (  8 9 )  = 0 . 0 0 1 3 7 1 0  

W (  9 1 )  = C.0012350 
W (  9 2 )  = 0.0011700 
k (  9 3 )  = 0 . 0 0 1 0 1 7 0  
d (  9 4 )  = 0.0009260 
bI( '35) = G,C00896C 
k'( 9 6 )  = 0.@004270 
C C I  9 7 )  = 0 . 0 0 1 0 1 9 0  
A (  9 8 )  = 0.0011730 
W (  9 9 )  = 0 , 0 0 1 3 8 7 0  
W (  1 0 0 )  = 0.0016630 

W (  5 9 )  = C.0041520 

krl 6 3 )  = C.0037220 

W (  6 5 )  = C.0035110 

W (  7 3 )  = C.0027070 

ki (  7 5 )  = C.0025190 

W (  9 0 )  = 0 . 0 0 1 3 0 2 0  
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Table 3 

Low Pass Filter Weights 
for 201-Point Least Squares Numerical Filter (P = 0,  h = .01). 
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Thus to compute the kth weight of a bandpass filter centered at f = 9 ,  one must operate in the 
following way on the k t h  weight of the low pass filter to be shifted: 

(56) WF = 2 cos  7r kq/fc Wk'. 

The response of a bandpass filter obtained by performing this operation on each weight of the 
N = 3 low pass Chebyshev filter computed previously as an example is shown by curve B in 
Figure 10. 

In order to filter out the diurnal component of geomagnetic data, bandpass filters were con- 
structed by shifting the expanded Chebyshev filter (N = 100) shown in Figure 11. The first five 
harmonics of the total diurnal component have periods of 24, 12, 8, 6 and 4.8 hours. Thus the L P  
filter was successively operated upon to give five BP filters which peaked at p = 1/12, 2/12, 3/12, 
4/12, and 5/12. Power spectral analysis performed on a number of typical runs of H-component 

data during the IGY (Ness, 1962*) has revealed 
that one need not be concerned with more than 
the first five harmonics of the diurnal com- 
ponent. This may also be ascertained by in- 
spection of the relative amplitudes of the 

- 2 .  
v * z z  
t 2 2  
I - %  

6 Z N  k k  
harmonics themselves. Figure 12 shows the 
first five harmonics at a middle latitude ob- : 1 w :: 

~ - 
L L -  servatory for a period during which the field 
2 %  L a  z -  4 1963 'NOV'DEC: 2 ' 3 ' 4 ' 5 ' 6 

was disturbed and thus contained harmonics of 
I t I a 8 enhanced amplitude. 

7 8 ' 9 ' 
30 1 

The individual harmonics shown in Fig- 
Figure 12-The first five harmonics of the diurnal com- 
ponent of the horizontal magnetic field at Fredericksburg, 
Virginia during the week of  geomagnetic disturbances of 
December 2, 1963. 

ure 12 were isolated from geomagnetic H com- 
Ponent data by using each of the five BP fi l ters 
individually on the raw data. Although this 
sor t  of analysis reveals the relative amounts 
of energy present in the different harmonics 

and shows modulation due to time variations in field strength, our primary intent was to develop a 
filtering process that would isolate the total diurnal component so that it could be subsequently 
subtracted from the raw surface data. The most efficient way to achieve this effect was to combine 
the five BP filters in such a way as to produce one resultant BP filter. 

Each filter, when applied to the raw data, produces as its output the particular harmonic com- 
ponent which it was  designed to pass. In our case 

*N. F.  Ness, private communication.  
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To a good approximation the diurnal component is a linear function of only these five harmonics, 
i.e., 

Since this is equivalent to 

O f ( t )  = O , ( t )  + 02(t) t .  . . + O,(t ) ,  

and since we have for an input function I( t ) that 

I( t  - j A t )  W i .  

(59) 

and similarly for the other components, then 

- 
we can write 

Hence the output of the filter obtained by linearly combining the corresponding weights from each 
separate BP filter is the total diurnal component that we wish to isolate. In general, for the k t h  
weight of a BP filter which will pass  only a data component which is the sum of m harmonics, we 
simply add: 

29 



where W: is the k t h  weight of the i t h  harmonic filter. 

1 
h 0.9- 

3 0.8- 

=- 0.7- 

5 0.6- 

0.5- 
e 0.4- 

0.3- 

Q 
v 

w 

5 0.2- 
w 
m 0.1- 

-0.1 

The frequency response of the filter which was  constructed for isolating the total diurnal 
component is shown in Figure 13, and the weights are listed in Table 4. The data values com- 
prising the output of this filter were subtracted from raw data values of corresponding times, 
producing geomagnetic H-component data free of the diurnal modulation. In Figures 14 and 15 
examples of hourly average data and the corresponding filtered data have been plotted. 

.o- 

0- 
' ' ' I I I I I I I I I I I  

One further application of our filters involved plotting on an expanded scale the raw 2.5 minute 
H component data for the time period covered by magnetic storms. We wanted the diurnal com- 
ponent removed from the data, but to prevent aliasing we had to low pass the data to remove the 
high frequency constituents before application of the bandpass filter. The output of the L P  filter 
was used as input to the BP filter, and the output of this second filter was the dirunal component. 

Scaling was used in the application of the BP filter to the extent that the weights were applied 
to 2.5 minute data values that were separated in time by one hour. Since the sampling frequency 
of the data was 24/hour, application of the weights to every 24th data value was equivalent to 
dividing the sampling frequency by 24, giving the one hour sampling frequency required by the 
design of the filter. The residual that remained when the output of the BP filter was subtracted 
from the raw data was the H-component of the geomagnetic field as described by 2.5 minute data 
points. 

Figure 16 is an example of the results of applying this filtering technique to the data recorded 
at six magnetic observatories during the storm of April 1, 1964. With the diurnal components re- 

Figure 13-Frequency response of filter derived by linear 
combination of five 201 -point bandpass filters obtained 
by shifting the expanded Chebyshev filter band shown in 
Figure 11 to values of p corresponding to the frequen- 
cies of each of the first five harmonics of the diurnal 
component. 

moved, the remaining time variations can be 
more effectively correlated with the field 
variations observed at a distance from the 
Earth by the satellite. 

Another filter application problem re- 
quired the construction of a bandpass filter 
centered on the 24-hour component and with a 
+4-hour bandwidth, i.e., the passband had to 
be centered on p24 = 0.0833, with cutoffs at 
pz8 = 0.0714 and pz0 = 0.1000. It was further 
required that N = 24, or  perhaps some larger 
multiple of this if N = 24 did not give satis- 
factory results. 

It is difficult to design a filter of this size 
o r  smaller with such a narrow passband be- 
cause the wavelength of the oscillations in the 
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Table 4 
Bandpass Filter Weights 

for 201-Point Harmonic Diurnal Component Filter. 

= 0.0852200 
= 0.0561956 
=-0 - 
=-0.0290446 
=-0.0169900 
= O.CO25714 
= 0.0000002 
=-0 .0149180 
=-0.0168320 
=- 0. C04 9 13  8 
= 0.0000002 
=-0 .0094198 
=-0 .0165720 
=-0 . C O  93 3 1 6  
=-0 .0000002 
=-O.C047780 
=-0 .0162138 
=- 0.0 1 4  2 3 6 0  
=-0 .0000002 
= 0 . 0 0 2 4 0 8 2  

=-0 .0266958 
=-O.OUOO008  
= 0 . 0 5 0 6 8 1 0  
= 0 . 0 7 6 1 3 0 0  
= 0 . 0 4 9 7 3 3 0  
= 0.0000010 
=-0 .0252172 
=-0 .0146126 
= 0 . 0 0 2 1 9 0 0  
= 0 . 0 0 0 0 0 0 2  
=-0.01246.28 
=-0.0 1.39787 
=-0 .0040262 
=-0.0000002 
=-0 .0075670 
=-0 .0131840 
=-O.C373504 
z-0. 
=-0 .0036886 
=-0 .0123918 
=-On 0 1 0 7 7 0 4  
=-0 .0000004 
= 0 . 0 0 1 7 8 5 2  
=-0.0115616 
=- 0 .  C 1 9 3  7 5 6  
=-0.000C014 
= 0 . 0 3 6 0 1 8 0  

= 0 . 0 3 4 5 8 9 4  
= 0 . 0 0 0 0 0 1 4  

=-0 .0157638 

= 0.0535300 

~~ 

=- 0.0 17 1 5 9 6  
=-0.0098348 
= 0 . 0 0 1 4 5 7 4  
= o,occoco4 
=-0.0081082 
=- 0.0089580 
=- 0.002 5 5 9 6  
= c . o o o c o c 2  
=- 0.0046 982 
=-0 .0080880 
=-0 .0044546 
=-0 ,  
=-C.  0021 8 0 2  
=-0 .0072338 
=- 0.0 0 6 2 0 5 4  
=- 0 .  occc  c 0 4  
= 0.0010022 
=- 0.0064C34 
= - 0 . 0 1 0 5 8 7 6  
=-o .ocooo12 
= 0.0191398 
= 0.0280400 
= 0 . 0 1 7 8 5 5 8  
= o . o o c o o 1 2  
=-0.0086004 
=- 0.004 8 5 2 4  
= 0.0007080 
= o . o o o c o o 2  
=-0 0 0 38 1 3  8 
=-0 .0041444 
=-0 .0011642 
=-0.  
=- 0 0 0 2 0 6 3 0  
=-C. 0 0 3 4 8 6 0  
=-0 .0018844 
=-0. 
=- 0 00088  7 2  
=-0 .0028838 
=-0 .0024232 
=-0. 
= 0.0003746 
=- 0,002 3 3 9 6  
=- 0.00 34 7 2  2 

= 0 , 0 0 5 9 0 9 2  
= 0 , 0 0 9 2 7 0 0  
= 0.0067216 
= O.OOCCOO6 
=- 0.004 7 3 5 4  
=-0 .0033264 

=-0 .0000006 

I 
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Figure 14-Hourly average data representing the varia- 
tions in the H-component of the geomagnetic field at 
seven magnetic observatories from May 9 to June 3, 
1964. The raw 2.5 minute data values from these sta- 
tions were averaged using the weights of the fi l ter shown 
in Figure 7. 
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Figure 16-Result of applying the diurnal component 
BPfilter to 2.5minute geomagnetic data from six mag- 
netic observatories. These filtered data show the H- 
component variations that occur at each of the stations 
priorto andduring the magneticstorm of April 1 ,  1964. 

approximating function (the actual frequency 
response) is greater than the width of the 
theoretical band. This prevents a very close 
approximation to the rectangular shape of the 
ideal band. Also in order to approach a step 
function type profile for the low pass filter to 
be shifted, one must employ a cutoff value of 
p > 0.  However, when P is increased in an 
attempt to f i t  the w(p) = 1 part  of the step, one 
finds that there is an accompanying rapid in- 
crease in the width of the achieved band at the 
base (near the W(p) = 0 level). Some results for 
N = 24, 48 and 72 are shown in Figures 17-19, 
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FREQUENCY NORMALIZATION PARAMETER, p = f/f, 

Figure 17-Frequency response obtained in  the attempt 
to approximate a 24 f 4 hour ideal passbund with a re- 
latively small filter (49-point, N = 24). 
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and the corresponding weights are tabulated 
in Table 5. As can be seen, it is only when 
N = 72 is used that a close approximation of the 
desired band is approached. 

/ ~ ~ - - ~ ~ -  I l l  

- 
I I I I I I 

CONCLUDING REMARKS 

In summary, an attempt has been made to 
present (1) a brief review of the basic concepts 
of numerical filtering, (2) derivations of formu- 
las which can be u t i l i z e d  to compute filter 
weights and frequency profiles by using either a 
least squares approach or  Chebyshev polyno- 
mials to approximate the desired response, and 
(3) several examples of how such filters are 

FREQUENCY NORMALIZATION PARAMETER, p = f/f, 

Figure 18-Improved approximation of the 24 * 4 hour 
ideal passband obtained by doubling the filter size (97- 
point, N = 48). 
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FREQUENCY NORMALIZATION PARAMETER, P = f/f, 

Figure 19-Close approximation (compare Figures 17 and 
18) of the 24 f 4 hour ideal passband obtained by use of 
a 145-point filter (N increased to 72). 

currently being used in studying transient variations of the earth's magnetic field. The presen- 
tation has been oriented more toward providing a guide to practical application than a rigorous 
theoretical treatment of the subject. 

For supplemental information on numerical filtering see Fullenwider and McNamee (Refer- 
ence ll), and Martin (References 8 and 12). Arthaber (Reference 13) has considered the related 
topic of spatial filtering. The more general subjects of digital filtering and frequency analysis 
have been discussed in the literature by Salzer (References 14 and 15), Linville and Salzer (Refer- 
ence 16), Hauptschein (Reference 17), and Langill (Reference 10). 
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Table 5 

Bandpass Fi l ter  Weights.for 24 f 4 Hour Passband. 
~ 

49 Points 
h = .025 p = .020 

W (  0 )  = 0.08199 
W (  1) = 0.08445 
W (  2 )  = 0.07422 
W (  3 )  = 0.05b41 
W (  41 = 0.03d74 
W (  5 )  = 0.@1728 
W (  61 = -0.00380 
W (  71  = -0.02147 
W (  8 )  = -0.03713 
W (  9 )  = -0.04674 
W(10) = -0.05C93 
W ( 1 1 )  = -0.04599 
W ( l Z 1  = -0.04477 
W(13) = -0.03655 
W114) = -0.02681 
W(15) = -0.01703 
W(16) = -0.00846 
W(171 = -0.00202 
W118) = 0.00180 

W(20) = 0.00197 
W(211 = -0.00063 
W(22) = -0.00;95 
W(231 = -0.00714 

W(191 = 0,00301 

W124) 7 -0.00947 

97 Points 
h = .014 p = .016 

W (  0 )  = 0.05969 W126) = O.OOsO3 

W (  2 )  = 0.05065 W(28l = 0.00173 
W (  3 )  = 0.04011 W(29) = -0.00248 
W (  4 )  = 0.02670 W130) = -0.00159 
W (  5) = 0.01160 W(31) = -0.00157 
W (  6 )  = -0.00388 W(32) = -0.OOii91 
W (  7 )  = -0.01n43 W(33) = 0.00037 

' W (  8 )  = -0.03U8R W(34) = 0.00184 
W (  9 )  = -9.041329 W(35) = 0.00215 
W(10) = -0.04604 W136) = 0.004r)Z 

W112) = -0.04587 W(38) = 0.00365 

H(14)  = -0.03253 W(40) = O . O O u 4 9  
W115) = -3.02284 WI41) = -0.00176 
W ( l 6 )  = -0.01243 W(42) = -0.00412 
W(171 = -0.00~3Q WI431 = -0.00631 
W(18) = 0.@0~.69 W(44) = - 0 . O O E ~ ~ 6  
W(191 = O.Ql387 W(45) = -0.0@;117 
W(20) = 0.01d82 W146) = -0 .00953 
W ( 2 1 )  = 0.02139 W(47) = -0 .00309 
W(22) = 0.02169 W(48) = -0.00792 
W(23) = 0.02C05 

W (  1) = 0.05738 W127) = 0.00492 

w f i ~ )  = - 0 . 0 4 1 ~ 6  ~ ( 3 7 1  = 0.00421 

~ ( 1 3 )  = -0,04051 ~ ( 3 9 )  = o.c!0137 

W124) = 0.0169f 
W(25) = 0.01303 

145 Points 
h = .012 p = .012 - 

W I  cr; = 0.04769 
W I  1 1  = 0.04591 w(37)  = -0.00423 
W (  2 )  = 0.04072 W(38) = -0.00258 
W (  3 )  = 0.03255 W(39) = -0.00123 
W (  41 = 0.02206 Wl40) = -0,00033 
W (  5) = 0.01013* W(41) = 0.00006 
W (  6 )  = -0.00?30 W(421 = -0.00004 
W (  71 = -0.01424 W(43) = -0.OOG56 

W (  9 )  = -0.03310 W(45) = -0.00225 
W(10) = -0.03867 W(461 = -0.00307 
W ( l 1 )  = -0.04114 w(47) = -0.00365 
W(12) = -0.04347 W(48) = -0.00386 
W(13) = -0.03684. W(49) = -0.00363 
W(14) = -0.03072 W150) = -0.00296 
W(15) = -0.02271, W(51) = -0.00188 
W( l6 )  = -0.01357 W(52) = -0.00049 
W(17) = -0.00409 w(53) = 0.00106 
W(18) = 0.00495 W(54) = 0.00262 
W119) = 0.01285 w ( 5 5 1  = 0.00404 
W(20) = O.O191O'W(56) = 0,00516 
W121) = 0.02332:W(57) = 0.00589 
W(22) = 0.02536 W(58) = 0.00614 
W(231 = 0.02527 W(5Y) = 0.00!)90 
W(24) = 0.02328 WI60) = 0.00522 
W(25) = 0.01977 W(61) = 0.00416 
W(26) = 0.01521 W(621 = 0.00284 
Wt27) = 0.01L11 W163) = 0.00138 
W(28) = 0.00499 W(64) = L0.00G07 
W(29) = 0.00030 W1651 = -0.00138 
W(30) = -0.00360 W(661 = -0.00246 
WI31) = -0.00648 W(67) = -0.00322 
W(32) = -0.00823 W(68) = -0.00364 
W(33) = -0.00R8R W(69) = -0.00372 
W(34) = -0.00856 W(701 = -0.00348 
W135) = -0.00749 I W(71) = -0.00300 
W(36) = -0.00396 W172) = -0.00235 

W (  8 )  = -0.02477 W(44) = -0.00136 
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